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The ergodic and stability properties of certain stochastic models are studied. 
Each model is described by a finite-dimensional stochastic process xa(t) 
satisfying dxa(t) = ~rh(xa, t) dt + ~ dz(t), where ~'a represents a "secular 
force" and z(t) is a stochastic process with given statistical properties. Such 
a model may represent a reduced description of an infinite-particle system. 
Then xa(t) may be either a set of macrovariables fluctuating about thermal 
equilibrium or the macrostate of a system maintained through pumping in 
a nonequilibrium state. Two Markovian models for which z(t) is Wiener 
and ~a(y, t) = G(~, y(t)) for some G nonlinear in y(t) are shown to 
possess a unique stationary probability density which is approached by any 
other density as t -~- oo. For one of these models, which is of Hamiltonian 
type, the stationary state is given by the Maxwell-Boltzmann distribution. 
A particular form of non-Markovian model is also proved to have the above 
mixing property with respect to the Maxwell-Boltzmann distribution. 
Finally, the behavior of the sample paths of xa(t) for small values of the 
parameter ~ is investigated. In the case when z(t) is Wiener and ~-~a(y, t) = 
G(y(t)), it is shown that x~(t) will remain close to the deterministic trajectory 
x~ (corresponding to A = 0) for all t ~> 0 if and only if x~ is highly 
stable with respect to small perturbations of the initial conditions. 

KEY WORDS:  Stochastic differential equations; Markovian and non= 
Markovian processes; mixing ; quasideterministic behavior; finite stochastic 
system; quasideterministic stationary states; ergodic properties. 

1. I N T R O D U C T I O N  

I n  this  p a p e r  a r i g o r o u s  i nves t i ga t i on  wil l  be m a d e  o f  the  e rgod i c  a n d  " a l m o s t  

d e t e r m i n i s t i c "  b e h a v i o r  o f  ce r t a in  s tochas t i c  processes .  T h e  p rocesses  c o n -  

s ide red  wil l  in  e a c h  case  lie in  a f i n i t e -d imens iona l  phase  space  X a n d  sat isfy 

a gene ra l i z ed  L a n g e v i n - t y p e  e q u a t i o n  o f  t he  f o r m  

dxa(t) = ~a(xa ,  t) dt + A dz(t)  (1) 

1 This paper is based on a portion of  the author's Ph.D. thesis. 
General Electric Company, Hirst Research Centre, Wembley, Middlesex, England. 
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Here X >/ 0 is a dimensionless parameter, ~ a  is an X-valued functional of 
the function x x and of the time t, which represents a "  secular force" producing 
dissipation, and z(t) is an X-valued stochastic process corresponding to a 
"fluctuating force"  whose properties are specified statistically. 

A stochastic system Z described by the variables xa(t) may sometimes 
be embedded as a subsystem of a larger mechanical system in which the time 
evolution is conservative. If  (1) is a stochastic differential equation, (1,2~ so 
that xa(t) is Markovian, such an embedding may be achieved by means of a 
Nagy dilation (cf. Refs. 3 and 4). Alternatively, certain special mechanical 
models, such as, for example, that of Ford et al., ~5~ have a contracted descrip- 
tion in terms of  an equation of the form (1). 

More generally, but on a heuristic level, equations of stochastic type are 
frequently used to model the behavior of open systems, both near and far 
from equilibrium, which undergo fluctuating forces due to their thermal 
environment (see, e.g., Refs. 6-9). In this context the ~ variables may be 
taken to correspond to a set of macrovariables of some mechanistic system M, 
and the fluctuating forces, whose stochastic properties are usually conjectured 
on the basis of physical considerations, to arise from interactions with the 
large number Of residual variables of M. 

The present paper will be devoted to a study of two aspects of the 
behavior of x~(t). The first concerns properties of an ergodic nature, which 
hold in the long-time limit. Let ma,t denote the distribution of xa(t) on X. 
In the existing literature it is often assumed without proof  or justified only 
by nonrigorous arguments (cf. Refs. 7, 10, and 11) that ma,t approaches some 
stationary limiting value as t -+ oo. In Propositions 3.1, 3.2, and 3.5 of Section 
3 we give a rigorous proof  that certain (both Markovian and non-Markovian) 
models exhibit this mixing behavior. 

We study also the behavior of the sample paths of xZ(t) at finite times, 
and the extent to which this process remains "a lmost  deterministic" when 
the strength of fluctuations, as governed by the parameter A, is sufficiently 
small, Previous nonrigorous treatments of the master equation for a set of 
macrovariables have suggested a connection between such "quasideterminis- 
t i c "  behavior of a stochastic system and stability with respect to initial 
conditions of the corresponding causal evolution obtained by neglecting 
fluctuations. C12-14~ In Proposition 4.3 of Section 4 we place this on a rigorous 
footing for a particular Markovian model. 

The models to be considered are described in Section 2. The following 
notation will be used. R, R +, and R" will denote the real line, the positive 
reals, and Euclidean n-dimensional space, respectively, and for n >/ 1 we shall 
write Ix] for the Euclidean norm of x ~ R ". If  (X, e, m) is a measure space, 
and 1 <~ p <~ 0% L~(X, m) will denote the L~-class functions on X with 
respect to m, and la the characteristic function of the set A e cr. The LP-class 
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functions on R ~ with respect to Lebesgue measure 
L~(R"). 
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will be denoted by 

2. D E S C R I P T I O N  OF T H E  M O D E L S  

We shall now formulate the equations of  evolution of the three stochastic 
models, Z A, ZB, and Z c ,  with which we shall be concerned. ZA and ZB are 
described by Markovian diffusion processes, while Zc is non-Markovian. 

ZA : X = R 2~, n < oo. x~( t )  = (q~(t),  p~(t))  satisfies 

dqa(t) = pa( t )  dt  (2) 

dp~(t) = [F(q~(t))  - l h2flp~(t)] dt  + h dw( t )  

where h,/3 > 0, w(t )  is an R"-valued Wiener process, and F: R" -+ R" is a 
(generally nonlinear) function satisfying a Lipschitz condition with constant k, 
i.e., IF(q1) - F(q2)[ ~< k[qz - q2[ for all ql, q2 ~ R ~. We shall assume that 
F = - grad V for some V: R" -+ R. With/3 equal to the inverse temperature, 
the Langevin equations describing the motion of a Brownian particle in an 
external force field according to the Ornstein-Uhlenbeck theory ~15,16~ have 
this form, as do the equations of the Ford-Kac-Mazur  model in the limit 
as the number of oscillators constituting the heat bath becomes infinite. 

ZB: X = R  ~, n < oo. xa( t )  satisfies 

dxa( t )  = F(xa( t ) )  dt  + h dw( t )  (3) 

where h > 0 and F and w(t)  are defined as for Z A. The Langevin equation 
for a Brownian particle acted on by a velocity-dependent frictional force has 
this form, as does the Smoluchowski approximation to the equations of the 
Ornstein-Uhlenbeck theory for a Brownian particle in an external force field. 
Heuristically, such an equation may be used to describe not only equilibrium 
situations, but also systems far from equilibrium, as in the case of Haken's (7) 
classical treatment of the single-mode laser. 

Zc:  X =  R 2~, n < or. xa( t )  = (q~(t) ,  pX(t))  satisfies 

dqa( t ) /d t  = p~(t )  (4) 

d # ( t ) / d t  = f (q~( t ) )  - 2a~/3 -~ e - ~ " - ~ f f s )  ds + 2a~/3 -~ e - ~ - ~ d w ( s )  
co  

Here h, ~, B > 0, F and w(t)  are defined as for XA, and .[t | e_~(t_~ dw(s )  is 
an It6 stochastic integral (see, e.g., Ref. 2). 

The form of the dissipative part of  the secular force in model Zc is a 
consequence of a fluctuation-dissipation type theorem, which is proved in 
Ref. 17, using methods similar to those of Ref. 18. This theorem is needed 
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to ensure that, when F is linear, the effect of the fluctuations is to drive Ze 
into a terminal state which, in the weak coupling limit, becomes the canonical 
equilibrium state at inverse temperature/~. Equations (2) are obtained from 
(4) in the limit as ~ --~ oo. 

3. M IX ING 

Let Z be a stochastic model whose variables xa(t) lie in a finite-dimension- 
sional phase space X and have the distribution m~,t on X. If there exists a 
probability measure ~a on X such that limt~ ~ ma,t = ~a  in the weak topol- 
ogy of measures whenever mx, o is absolutely continuous with respect to ~a,  
then Z will be said to be mixing with respect to ~a.  In this case the measure 
~a is clearly invariant under the evolution of xa(t). 

3.1. Markovian Models 

Let ~ denote the sigma-algebra of Borel sets of X, and B(X, ~) the 
Banach space of bounded, measurable functions on Xwith the sup norm [] ]] | 
Then for each of the models ZA and Y,~ we can define a positivity-preserving 
contraction semigroup {Tt} on B(X, ~) by (19~ 

(Ttf)(x) = fx P(t, x, dy)f(y) (5) 

where P(t, x, E), t > 0, x e X, E ~ ~ ,  is the transition probability of the 
corresponding diffusion process xa(t). Let Co(X) and Cgo~(X) denote, 
respectively, the continuous functions vanishing at infinity and the twice 
continuously differentiable functions with compact support on X, both with 
the norm II 1[ o~. The restriction of {Tt} to Co(X) is a strongly continuous semi- 
group whose generator is an extension of the differential operator G defined 
on C~o~(X) by (15) 

1 hz exp /3lpl ~ 0 ZA: G = ~  ~ ~ e x p -  fllp[Z 0 
~=1 ~P~ 

- {H(q ,  p) ,  } 

= G 1 -  G2, say 

where H(q, p) = V(q) + �89 and { } is a Poisson bracket. 

~= 1 ~x~ -----~ Ox~ Ux~ 

We shall now show that, under certain conditions on V, models Za and 
EB are mixing. 
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Proposition 3.1. Suppose that: 

(a) V is three times continuously differentiable. 
(b) The first and second partial derivatives of grad V are bounded. 
(c) exp(-/3V) ~LI(R"). 
(d) (OV/Oq~) 2 exp(-/3V) ~ LI(R"), i = 1,..., n. 

Let the distribution ~ on R 2" be given by the probability density 
Nexp[-f3H(q,p)],  where N -1 =Jxexp[- -pH(q ,p)]dqdp.  Then r~ is a 
stationary distribution for ZA, and ZA is mixing with respect to ~.  

Proposition 3.2. In addition to (a) and (b) of Proposition 3.1, let V 
satisfy: 

(c') JR, exp[-ZV(  x)/h2] dx = iV; i < oo. 
(d') (OV/Ox~) 2 exp(-2V/h 2) ~LI(R"), i = 1,..., n. 

Let the distribution ~a on R ~ be given by the probability density 
Na exp[-2V(x)/h2]. Then ~ is a stationary distribution for Zn, and ZB is 
mixing with respect to ~A. 

In order to prove these propositions, the following results will be needed. 
The proofs of Propositions 3.3 and 3.4 can be found in Ref. 2, Part II, 
Par. 9 and Ref. 19, p. 160, while those of Lemmas 3.1 and 3.2 are given in 
the appendix. 

Proposition 3.3. Let Y(t )E R m be a Markovian diffusion process 
satisfying 

dY(t)  = a(Y( t ) )d t  + b(Y(t ) )dw(t)  

where w(t) is a d-dimensional Wiener process, and the Rm-valued function 
a(y) and the m x d matrix-valued function b(y) satisfy the conditions of the 
existence and uniqueness theorem (see Ref. 1, p. 105) and have continuous, 
bounded first and second partial derivatives. Let C(2~(R ~) denote the con- 
tinuous, bounded functions on R m having continuous, bounded first and 
second partial derivatives, and define {Tt} by Eq. (5), where P(t, x, A) is the 
transition probability of Y(t). Then for a n y f ~  C(2~(Rm), ~" < 0% the function 
T~fis continuous and bounded on [0, ~-] • R ~ and has continuous, bounded 
first and second partial derivatives with respect to the y~ ..... y~ and a con- 
tinuous partial derivative with respect to t on this domain. Also, 

8t = ~2 B~j(y) 8 y ~  + a~(y) ~y~ 

lim Ttf(y)  = f ( y )  

where B(y) is the m x rn matrix b(y)b'(y). 
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P r o p o s i t i o n  3.4. Let ~qo be a family of functions o n  R m, m < ~ ,  
which is closed under addition, scalar multiplication, and bounded pointwise 
limits. If  s162 contains Cgom(Rm), then ~ contains all bounded, Borel functions 
on R m. 

k e m m a  3.1. Let the function f(u, v) be locally integrable on R" x R a 
[i.e., f l A  eLI(R n+a) for any bounded subset A of Rn+a], and suppose that 
fn, f(u, v)r is v-independent almost everywhere (Lebesgue), for any 

E C~om(R'~). T h e n f i s  v-independent almost everywhere. 

L e m m a  3.2. Let h be a locally integrable function on R" such that, for 
some i <<. n, fR, h(u)(9r du = 0 for all ~b e C2oom(R"). Then h is u~-inde- 
pendent almost everywhere. 

P r o o f  of  P r o p o s i t i o n  3.1. We first show that the distribution ~ is 
stationary. Suppose t h a t f e  C(2~(X), and let I be a bounded interval of R + 
containing t >/ 0. From (b), (d), and Proposition 3.3 we deduce the existence 
of c < ~ such that, for all s e / ,  x ~ X, 

Hence we may differentiate under the integral sign and use (c), (d), and 
Proposition 3.3 to obtain 

-~ Ttf(x) d~(x) = N GTtf(x) exp[-flH(q,  p)] dq dp = 0 

Let ~o = {g ~ B(X, ~ ) :  [~x Ttg(x) d~(x) = [~x g(x) d~(x) for all t >/ 0}. Now, 
~o is closed under bounded pointwise limits, and, by the above, Cgo~(X) c ~. 
It follows from Proposition 3.4 that 1A e ~,f for any A ~ ~ ,  and hence that 

fx  P(t, x, A) d~(x) = fx TtlA(x) d~(x) = ~(A) for all t >/0 

Now by Chapter XIII, Par. 1, Theorem 1 of Ref. 20, Eq. (5) defines {Tt} as 
a contraction semigroup of positive linear operators on the Hilbert space 
~f" = L2(X, ~), with norm tl H and inner product ( ) .  The domain of strong 
continuity of {Tt} on ~ includes Co(X), and is norm-closed in ~ by general 
semigroup theory; hence it is the whole of ~.. Let this semigroup have 
infinitesimal generator Q, with domain Dom(Q). 

Let g~  C(2~(X). Using (b)-(d) and Proposition 3.3, we can again 
differentiate under the integral sign and integrate by parts to obtain 

(d/dt)llT, gll 2 = _ A= ~ IlO, Ztg[[ 2 
t = 1  
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where D~ is the differential opera to r  ~/Op~, defined on C(2~(Z) ~ ~ .  Thus  
I] Ttgtt 2 is decreasing, bounded  below, and absolutely cont inuous,  and so there 
exists a sequence (to) I' 0o such tha t  

lira [ID, Tt~g[[ = O, i = 1 ..... n (6) 

Using the te rminology ~f Bruck (21~ we call such a sequence a ( ,)-sequence.  
The  set {T~g: t >1 0} isoounded~ and hence (see Ref. 20, p. 126) weakly 
sequentially precompact ,  so tha t  by passing to a subsequence we may  assume 
tha t  

weak-l im Tt~g = 7 for  some 7 ~ 

Define W~ on the domain  Cgom(X) by 

W c f  = flp~f - Of/~p~ 

Then  for  each i = 1 .... , n, D~ and W~ are adjoint,  and so the adjoint  opera tor  
D~* exists and extends W~. Let  ~b e 2 Coom(X). For  each i, 

(7, W~b) = l im (Tt~g, D~*~b) 
O ~ o o  

= lira (D ,  Tt,g, ~b) = 0 by (6) (7) 
r  

C 2 (R "~ Then ~7(P) = j'~. {exp[- f lV(q)]}7(q ,p)~b~(q)dq is defined Let  ~bl ~ comk J" 
outside a ~b~-independent null set and locally integrable on R ", and it follows 
f rom (7) tha t  

e --~ r @ o ~7(P) ~-~p~ exp {3[p] 2 = 

for  any ~b2 e C 2oom~(R"~ and i = 1 .... , n. Hence  by L e m m a  3.2, 9 i s  a constant.  
Since ~b~ was arbi t rary,  it now follows f rom L e m m a  3.1 tha t  7 --- 7(q)  is 
independent  o f  the p coordinates.  

As in Ref. 21, call a sequence ( s o ' ) ~  R + an a lmost-( , ) -sequence if 
( s / )  I' 0o and there exists a ( , ) -sequence (to') such that  limo_~ =(so' - to') = 0. 
Let  0 < ~- < m i n ( s / ,  q ' ) .  Since 

[[(d/dt)Ttg]] = ]]Tt_~QT~g[] <<. []QT~g]] for  any t t> 

we have 

I l T , ; g -  Tt;g]] <~ I s / -  t / [  ]lOT~gl[--+O as a--+ oo 

Hence  if  either weak-limo~ ~ T~;g or w e a k - l i m ~  co Tt;g exists, then both  limits 
exist and  are equal.  Moreover ,  it has been shown tha t  this c o m m o n  limit, i f  it 
exists, is a funct ion of  the q coordinates  only. 
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We have demonstrated the existence of a (,)-sequence (t~) such that 
weak-limo~ o~ Ttog = 7, a p-independent function. Let t > 0. Then weak- 
lim~_~ Tt+t~g = TtT. Since (t + t~)j' 0% it is easy to show (21~ that (t + t~) 
has an almost-(,)-subsequence (so). Clearly, weak-lim~_~ ~ T j  = Tt7, and it 
follows from the remarks of the previous paragraph that Tt7 is a function of 
the q coordinates only. 

Consider next the dual semigroup {Tt*} on ~ .  Now, {Tt*} is weakly 
continuous, and hence also strongly continuous, since 9f' is separable. Let its 
infinitesimal generator be Z. I f f e  Dora(Z),  t/> 0, then Tt*fE Dom(Z) ,  and 
for any h e Dom(Q),  

(ZTt*f, h) = lim E-l((Tt*+, - Tt*)f, h) 
E ~ O  

--- lim , -~(f , (T,+ ,  - Tt)h) = (Tt*f, Qh) 
~ 0  

Thus Tt*f ~ Dom(Q*) and Q*Tt*f = ZTt*f  
Note that for any ~o ~ C~o~(X) and t 1> 0, 

(% QTtg) = (d/dt)(% Ttg) = ((G~ + Gz)% Ttg) (8) 

since we may use Proposition 3.3 and the fact that ~o has compact support 
to differentiate under the integral and integrate by parts. Hence, since 
Cgom(X) _ Oom(Z) ,  

(d/dt)(% Tt~,) = (ZTt*% 7) = (Q*Tt*% 7) 

= lira(% QTt+t~g) 
G ~ o O  

= lim((G~ + G2)% Tt+~,g) by (8) 
G ~ O 0  

= ((G~ + G2)% TW) = (G2% TW) 

2 n since Tt7 is p-independent. Let cp(q, p) = cp~(q)cp2(p), where ~o~, ~% e Coo~(R ) 
are chosen arbitrarily subject to 

f [exp(-�89 dp = 0 
ll 

Then for all t >1 O, (% Tt~,) = 0, and so 

0 = (G2rg, TW) 

= N ,=~ (fR- p, exp(--�89 

x {~R exp[-/3V(q)] Tw(q)I~rpI [ ~  OcPl(q)]0q, ] dq) 
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It follows from the arbitrariness of cp2 that 

, ~'(q) 7q~ {exp[-flV(q)]cpl(q)] dq = 0 

2 n for i = 1,..., n and any cpl E Coom(R ). By (a) and Lemma 3.2, y is therefore a 
constant. From the invariance of  N we deduce that 

= (g, 1) = fx  g(x) din(x) Y 

Finally, suppose that weak-limv. ~ T~g # (g, 1). Then, by weak sequen- 
tial precompactness of {Ttg: t 1> 0}, there must exist a sequence (u~) c R +, 
(u~) I' oo, for which w e a k - l i m ~  T,,og = ~7 # (g, 1). Then (21) (u~) has an 
almost-(.)-subsequence (s~'), and it follows that there exists a (,)-sequence 
(t~') for which weak-lim~ ~ ~ Ttsg = ~7. However, we have proved that for such 
a sequence we must have w e a k - l i m ~  Tt~g = (g, 1). This contradiction 
shows that w e a k - l i m ~  Ttg = (g, 1) for any g e C(2)(X), and hence by 
density also for any g e ~ .  

Density arguments now show that 

lim fx TZ(x)h(x) dx = fxf(x) dm(x) fx h(x) dx 

for a n y f e  Co(X), h ~ LI (X) ,  and the conclusion of Proposition 3.1 follows. 

Proof of  Proposition 3.2. Since the proof  of this proposition is very 
similar to, although slightly less involved than, that of Proposition 3.1, we 
give only a brief outline of  the main stages involved. 

We now take X = R ~, and let G be the differential operator corresponding 
to ZB. Using (b), (c'), and (d'), Na is shown to be a stationary distribution for 
Z~ by an argument similar to that used to prove invariance of ~ for Y~A, and 
{Tt} is defined as a strongly continuous contraction semigroup with generator 
Q on the Hilbert space o~ = L2(X, ~ ) .  Proceeding as in the proof  of  
Proposition 3.1, and using (b) and (d'), we find that for g e C(2)(X), 

(d/dt)]lT'gl[ ~ = - A2 2 [ID'T'gll z 
i = 1  

where D~ is now the differential operator a/Ox~. The existence of a sequence 
(t,) I' oo such that l i m ~  ~o tl D, Zt~g[[ = O, i = 1 ..... n, and weak-lim,_. ~o Tt~g = 
y ~ ~ follows, and we can show that for any r E C~o~(X) and i = 1 ..... n, 
(y, W~b) = O, where now 

2 0 V  a~b 
wg, = a~ ~ 4, Ox, 
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An application of Lemma 3.2 leads to the conclusion that ), is a constant, 
and it is clear from the invariance of ~a  that this constant must be (g, 1> = 

f x g(x) d ~ ( x ) .  
The proof  that weak-limt_.o~ Ttg = (g,  1>, and hence that Z B is mixing 

with respect to ~a,  now follows almost exactly as in the case of ZA. 

3.2. A Non-Markov ian  Model  

Although it is not Markovian, model Y'c can nevertheless also be shown 
to have the mixing property. 

Proposition 3.5. Let V: R n -+ R satisfy conditions (a)-(d) of Proposi- 
tion 3.1, and let the distribution ~ on R 2n be defined as in that proposition. 
Then ~ is stationary for Zc, and Zc is mixing with respect to ~.  

ProoL By increasing the dimension of the phase space, we shall recast 
the problem in a Markovian form. The proof  will then proceed in a way 
similar to that of Proposition 3.1. 

Define r~( t ) E R ~ by 

ra(t) = -A2c e-~(t-S)p~(s) ds + )tc e -~t-s)  dw(s)  
- -  o o  

where c = 2aft-t .  Then Eqs. (4) can be written 

dq~(t) = pa(t) dt 

dp~(t) = [ - g r a d  V(q~(t)) + rX(t)] dt (9) 

dr~(t) = [-?,2cpa(t) - ara(t)] dt + Ac dw(t)  

Equations (9) define a homogeneous diffusion process 

Y~(t) = (q~(t), p~(t), r~(t)) 

on R a~. Let {Tt} be the corresponding contraction semigroup on the space of  
bounded, measurable functions on R 3~ (see Section 3.1). The restriction of 
{Tt} to Co(R 3~) is a continuous semigroup whose generator is an extension 
of the differential operator G defined on C~om(R a~) by 

__ ~ [OV(q) O 

= G ~ - G z - G 3 ,  say 

Let ~ be the distribution on R z" that corresponds to the probability 
density const • e x p { - f l [ V ( q )  + �89 ~ + ~,lrl~/#A~c~]}. Proceeding as in the 
proof  of Proposition 3.1, we show that ffa is a stationary distribution for 



Properties of Finite-Dimensional Stochastic Systems 501 

Ya( t ) ,  and that  {Tt} is a strongly cont inuous semigroup, whose generator  we 
again call Q, on the Hilbert space ~r = L 2 ( R  a~, g~). Let C(~)(R 3~) be defined 
as in Proposi t ion 3.3, and let ]] 11 and < ) denote, respectively, the norm and 
the inner p roduc t  in ~ .  For  g ~ C(2)(Ran), 

(d/dt)llT~gll ~ = _ A2c2 ~ IID, T~gII ~ 
t = 1  

where D, is now the differential operator  O/~r,. We can find as before a 
sequence (to) I" oo such that  l imo~l ]DiT t ,g[ ]  = O, i = 1,..., n, and weak- 
l im,~ ~ Ttog = ~, ~ ~, ,  where ~, is independent  o f  the r coordinates. By an 
argument  paralleling that  used in Proposi t ion 3.1, we now prove that,  for  any 

<(Gz + G2 + G3)9, ~') = 0 

and hence that  y is a constant  element o f  ~ .  I t  follows f rom the stationarity 
o f  gh that  ~ = <g, 1). 

The distribution o f  (q~(t), p~(t) )  in R 2~ is m~,t.  Let that  o f  Y~( t )  in R 3~ 
be /~ , , ,  Since r~(0) is Gaussian,  rnh.o is given by a probabil i ty density if and 
only if the same is true o f  ~ , 0 ,  and in this case it can be shown as in Proposi-  
t ion 3. l that  limt~ | ~,~ = g~ in the weak topology  of  measures. Integrat ing 
out  over the r coordinates yields the desired mixing result for X] c. Q E D  

For  a non-Markov ian  model  o f  this form, we have therefore shown that  
the variables become distributed according to the Maxwel l -Bol tzmann distri- 
but ion as t ~ oo whenever their initial distribution is given by a probabil i ty 
density. This approach  to equilibrium occurs for arbitrary fixed, positive 
values o f  the coupling constant  A, and no weak coupling limit is required. 

4. Q U A S l D E T E R M I N I S T I C  BEHAVIOR 

For  h /> 0 let the stochastic process x~(t )  satisfy Eq. (1) with initial 
condit ion x~(0) = Xo. Let E be a stochastic system whose evolution is 
described by xa(t) .  In  physical applications the interaction parameter  h 
sometimes turns out  to be very small in some appropria te  sense, being a 
negative power o f  a macroscopic  quantity,  a and in this case it is clearly 

a For example, in the case ofa Brownian particle with velocity v(t) acted on by a frictional 
force F(v(t)), we have the Langevin equation 

m dr(t) = F(v(t)) dt + dw(t) 

where w(t) is a Wiener process, and m (>> 1) is the ratio of the mass of the Brownian 
particle to that of an atom in the host liquid. On rescaling the time variable to T = t/m, 
the above equation becomes 

dv(z) = F(vO'))dr + m -112 dwO') 

and hence provides an example of Eq. (1) with h = m- l/u << 1. 
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desirable to ascertain whether xa(t) exhibits only small fluctuations about 
x~ where x~ is the solution of the deterministic equation 

dx~ = ~ ~ 1 7 6  t) dt; x~ = Xo 

Def in i t ions .  (a) ~ is partially quasideterministic (pqd) if lima~o xa(t) 
= x~ in probability, uniformly on bounded time intervals. 

(b) Z is quasideterministic (qd) if lima_~0 xa(t) = x~ in mean square 
(and hence also in probability), uniformly for t /> 0. 

In this section it will be proved that the pqd property holds under very 
general conditions, being satisfied in particular by each of the models ZA, 
ZB, and Zc. In addition, Z~ will be shown to exhibit qd behavior if  and only 
if the corresponding causal evolution x~ is adequately stable with respect 
to small changes in the initial conditions. 

Proposition 4.1. Consider the equation for x~(t) in R ~, 1 ~ n < 0% 
t>~O: 

dx~(t) = F(x~( t ) )d t  + 2t dz(t);  x~(O) = xo (I0) 

where h /> O, Xo ~ R ~, z( t )  is an R~-valued stochastic process whose sample 
paths are continuous with probability 1, and F: R ~ ~ R" satisfies a Lipschitz 
condition with constant k. Equation (10) has a unique solution which is 
defined for all t >/ 0 and is continuous with probability 1. The corresponding 
stochastic system Z is pqd. 

P r o p o s i t i o n  4.2. Consider the equations for x~(t) = (q~(t) ,p~(t))  in 
R 2~, 1 ~< n < c~, 

dq~(t)/dt = pa(t)  

dpX(t)/dt = F(qa(t)) - A~f f  K(t  - s )pa(s)ds  + Af(t) (11) 

xa(O) = Xo = (qo, Po) 

where A /> 0, xo ~ R 2", F is as in Proposition 4.1, f ( t )  is an R"-valued sto- 
chastic process whose sample paths are continuous with probability 1, and 
K: R + -+ R is an Ll-class function. Equations (11) have a unique solution, 
which is defined for all t >/ 0 and continuous with probability I, and the 
stochastic model Z described by xa(t) is pqd. 

Corollary 4.1. Each of the models Ea, ZB, and Zc is pqd. 

P r o o f  o f  P r o p o s i t i o n  4.1. The existence, uniqueness, and continuity 
of the solution of (10) are proved by the Picard method as in Chapter 8 of 
Ref. 15. Let �9 > 0, 7' > k, and define x to be the complete metric space of 
continuous functions ~o: [0, ~] -+ R" such that ~(0) = x0, with norm ]]~011 x = 
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supo~.<~ e-r~l~(s)[. Also, with z a fixed, cont inuous funct ion of  t, define 
mO-) = SUpo.<,.<~]z(s) - z(O)l < or. For  s E  [0, r], Ixa(s) - x~ < 
k J'~ Ixa(u) - x~ du + Alz(s) - z(O)l and hence 

IIx ~ - x ~  ~ ~Ilx ~ - x~ s u p  e -r~ e TM d~ + A m ( , )  
0~s~<~ ,J0 

so tha t  

Ilx ~ - x ~  ~ K7/(7 - k) ]Amff)  

Thus for  any t e [0, ~-], [xa(t) - x~ ~< e ' [7 / (7  - k)]hm(z) ~ 0 as A --+ 0, 
uniformly for  t e [0, ~-]. By the assumption about  the sample paths of  z( t )  
it follows that  lima_~o xX(t) = x~ uniformly over t e [0, r], the limit holding 
with probabil i ty  1 and hence also in probabili ty.  Since z was arbitrary,  it 
follows that  Z is pqd. 

P r o o f  o f  P r o p o s i t i o n  4.2.  The existence, uniqueness, and continuity 
o f  the solution o f  (11) are again proved by the Picard method.  To prove the 
pqd  property;  we write 

qa(t) = qo + pa(s) ds 

Pa(t) = Po + f(qX(s))  ds - A 2 G(t - s)pX(s) ds + A f ( s )  ds 

where G ( u ) =  ~ K ( y ) d y .  For  a fixed continuous sample path f ( t ) ,  and 

~- > 0, let.[ o If(s)[ ds = rn(~-) < oo, and define [Ix[[. = max([q I, [p[ ) for  x = 

(q, p) a R 2". Then,  for  all t e [0, r], 

Ilx~(t) - x~ ~< ~ n ( , )  + (1 + k + A=IIK/I1) llx~(s) - x~ ds 

so that  by the Bel lman-Gronwal l  lemma (see Ref. 1, p. 107; Ref. 2, p. 41), 

[[x~'(t) - x~ ~ Am(~){1 + (1 + k + A2IIKII3 

f2 x exp[ (1  + k + a2IIKtl l ) (t  - s ) ]  ds} 

~< Am(r) exp[(1 + k + A2llKIlO-d for  all t e [0, ~-] 

Hence Ixa(t) - x~ ~< 21J211x~(t) - x~ - +  0 as A - +  0, uniformly for  
t ~ [0, ~']. QED 

We turn  next to an investigation of  conditions under  which the more  
restrictive qd proper ty  will hold. 
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Proposition 4.3. Let the R"-valued stochastic process xa(t) satisfy 

dxa(t) = F(xa( t ) )d t  + )t dw(t);  xa(O) = Xo (12) 

where w(t)  is an n-dimensional Wiener process, and F: R" -+  R" is con- 
tinuously differentiable with derivative D F  satisfying (i) 1[ DF(x)]] ~< M < 
for all x ~ R ", (ii) DF(x)  <~ - A I  for all x ~ R" and some A > 0, where I is 
the identity map on R" and [I I[ is the operator norm on the space of linear 
maps of  R" to R ". Then the corresponding stochastic system Y~ is qd. 

The following lemmas, which are special cases of results proved in Part 
II, Pars. 8 and 13 of  Ref. 2, will be needed for the proof  of Proposition 4.3. 

kemma 4.1. With x~(t) defined by (12), let z~(t) ~ R ~ be the solution 
of 

dza(t) = DF(xa(t))zX(t) dt + dw(t); za(O) = 0 

Then the mean square derivative of  xa(t) with respect to h exists and is given 
by za(t) for all t /> 0. 

Lemma 4.2. g(lza(t)l 2) ~< n/(2A) for all t >/ 0, where C denotes the 
expectation with respect to the underlying probability space. 

P r o o f  o f  P r o p o s i t i o n  4.3. Using Lemma 4.1 and the mean value 
theorem, 

[g(lx~(t) - x~ 1/2 ~ h sup [~(Iz~(t)[~)] ~j~ 

so that by Lemma 4.2, 

~(Ix~(t) - xO(t)l 2) <<. h2n/(2A) 

It follows that Z is qd. QED 

As a corollary of Proposition 4.3, we see that model Z B will be qd pro- 
vided that the corresponding causal evolution is highly stable with respect to 
changes in the initial conditions. The following example shows that this strong 
stability requirement is also necessary in order to ensure qd behavior of Z~. 

Example. Let X = R, and suppose that V: X - +  R has the form shown 
in Fig. 1 and satisfies suitable regularity conditions. Let xa(t) satisfy Eq. (3) 
with n = 1 and F = - dV/dx.  By taking V to be a Liapunov function for the 
deterministic trajectory, we see that x~ if initially in the well at A, will 
remain there for all time and exhibit stable behavior with limt_~ ~ x~ = x l .  
However, it was shown in Section 3 that the distribution mz.t of x~(t) will 
tend to ~a as t--> o% where ~a  is the stationary distribution given by the 
probability density const x exp[-2V(x) /h2] .  It is easy to prove (see Ref. 
17) that, for V as shown, lima~o ma = 3x~ in the weak topology of measures, 
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V(x) 

! ! x . /  

Fig. 1 

where 3x2 is the delta distribution concentrated at x2. Thus this particular 
model is not qd, since the dispersion of xa(t)  - x~  does not tend to zero 
uniformly in t >t 0 as ~ --> 0, owing to the ability of  the fluctuating xX(t) to 
diffuse over the barrier between the wells A and B. ~ 

This example shows that  the occurrence of even arbitrarily weak 
stochastic forces may lead to a drastic departure from the deterministic law. 
It  also demonstrates that the order of taking limits of  m~.t as k--+ 0 and 
t ~ oo may be critical. For, let ma, o be given by a probability density that is 
concentrated inside the well A. Then, by the pqd property of  the model, and 
the given form of  V, we have limt~ ~ lima,0 ma,, = ~xl, whereas 

lim lim m;t,t = ~x2, 
A ~ 0  t ~ o o  

showing that the long-time and weak coupling limits may not in general be 
interchanged. 

The presence of fluctuations completely changes the stability properties 
of  the system. For the causal evolution several stable stationary states, associ- 
ated with distinct local minima of V, may coexist, whereas when the stochastic 
forces are taken into account there is a unique steady state, which is ap- 
proached in time by all other states. Any local instabilities of the causal 
evolution now disappear, manifesting themselves only in the detailed form 
of the stationary state. 

Gaussian Approximation to  xZ(t) .  It has been shown in Proposition 
4.3 that, providing (i) and (ii) are satisfied, x~(t)  - x~  is 0(k) in mean square, 
uniformly for t /> 0. Thus xX(t) can be approximated for all positive times by 
the deterministic trajectory x~ to first order in the small parameter  k. 

It should nevertheless be remarked that since ~16> the probability per unit time that 
xA(t) will escape from A over the barrier of height h is proportional to exp(-fih/k2), 
where fl is the inverse temperature, Z may, if h is very large or A very small, behave in a 
nearly deterministic manner for a long period of time. 
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If  in addition the function Fis  twice continuously differentiable with bounded 
second derivative, we can again use results of Ref. 2, Part II, Pars. 8 and 13 
on the differentiation with respect to a parameter of stochastic processes and 
the boundedness of their moments to show that, for any A /> 0, the second 
derivative of xa(t)  with respect to I exists and is bounded in mean square for 
all t /> 0. It then follows that x~(t)  - x~  - ~y(t)  is O(2~ 2) in mean square, 
uniformly for t /> 0, where y ( t )  = z~ is the Gaussian process given by 

dy( t )  = D r ( x ~  dt + dw(t ) ;  y(O) = 0 

xa( t )  may therefore be approximated to second order in A by the Gaussian 
process x~  + Zy(t) ,  uniformly for t /> 0. Under the conditions stated above, 
this substantiates assertions made in Refs. 12 and 14. 

5. CONCLUDING REMARKS 

Certain finite-dimensional models, of types which are frequently used to 
describe the evolution of stochastic systems, have been studied. Conditions 
have been sought under which certain desirable properties of these models 
can be proved to hold; some of these properties have previously been treated 
in a nonrigorous manner or tacitly assumed to hold for physical systems. 

By contrast with the usual treatments of steady-state probability densities 
for diffusion processes (see, e.g., Refs. 6, 7, and 11), no initial assumption is 
made in Section 3 that such a density will necessarily be smooth enough to 
satisfy the Fokker-Planck equation. Nor is consideration restricted, as in 
Ref. 11, to a class of well-behaved densities. Instead, for the process xX(t) 
describing EA or ZB it is proved that there is a unique stationary probability 
density in phase space which is approached by any other density as t - +  0% 
and that for ZA this density corresponds to the Maxwell-Boltzmann distribu- 
tion of thermal equilibrium. 

Most of the existing results on the approach to equilibrium of nonlinear, 
non-Markovian systems have been obtained in the limit as A--~ 0, t--~ 0% 
-r = ,~2t ~ [0, r0], ro < oo. This (van Hove) limit has in particular been em- 
ployed in rigorous treatments of open systems by means of generalized master 
equations ~22~ and of analogous problems formulated in terms of Banach 
space-valued stochastic processes. (23,2~ It does not generally hold uniformly 
over all ro /> 0. By contrast, no weak coupling limit ~,-+ 0 is used in our 
treatment of the non-Markovian model Zc, whose variables xa(t)  are shown 
to become distributed according to the Maxwell-Boltzmann distribution as 
t--~ oo whenever their initial distribution is given by a probability density, 
and for any fixed ~ > 0. 5 

5 A similar result is obtained in Ref. 25 for a particular class of quantum systems. 
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While the property that we have defined as " p q d "  is satisfied very 
generally, results of Section 4 show that a stochastic model will have the more 
restrictive " q d "  property if and only if the corresponding deterministic 
trajectory, obtained by neglecting the fluctuating forces, shows a strong 
stability with respect to small perturbations of the initial conditions. We refer 
again to the example of Section 4 for an important illustration of  the way in 
which, when this strong causal stability is lacking, a model that is pqd may 
nevertheless fail to be qd. 

A P P E N D I X  

P r o o f  o f  L e m m a  3.1. We first note that the sigma-field of Borel sets 
5~ a on R a is generated by the semiring ~a  of half-open intervals, where I e ~a  
has the form I =  {veRa:a= < v~ ~< bi, i =  1 .... ,d} for some a, b e R  a . 
Lebesgue measure is the unique extension to ~a  of the set function t~: ~a  _+ 
R + defined by tz(I) a = 1-[~=1 (bi - a0. If  the function g is locally integrable 
on R a and satisfies 

fl g(v) dv = fs g(v) dv (A1) 

for any I, J e ~d with t~(I) = /~(J )  < ~ ,  then 

z g(v) dv = q)(/~(I)) fo r some  Cb: R+ --+ R 

�9 , being linear and continuous, has the form ~ ( ~ ( I ) ) =  elx(I) for some 
c e R, and it follows that g(v) = c almost everywhere (Lebesgue). Moreover, 
by the local integrability of  g, it will suffice to assume (A1) for each of  the 
countable set of pairs of intervals (I, J )  having rational end points and 
satisfying t~(I) = ~(J)  < m. 

Now for L J e ~a  with /~(I) = t~(J) < oo we have, interchanging the 
order of integration by Fubini's theorem, 

f~, ~b(u) du( f f(u, v) dv - f~ f(u, v) dv} = O for any ~-'/' E t~2~om~tR'~', 

Hence for all u outside a Lebesgue null set, 

f f ( u , v ) d v = f f ( u , v ) d v  (A2) 

Taking a countable union of null sets, we obtain a null set N1 such that for 
all u in the complement N1 c of N~, (A2) holds for all (I, J )  having rational 
end points and finite, equal Lebesgue measures. Since f(u, v) is locally inte- 
grable for all u outside a null set N2, it follows from the discussion at the 
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beginning of the proof  that, for u e (N1 t.) N2)C,f(u, v) = f (u)  is v-independent 
almost everywhere. 

P r o o f  o f  L a m i n a  3.2. Let I = (a, b] and J = (c, d] be elements of  
~1 with b ~< c and b - a = d - c. Let X be the function on R that is linear 
on I and J and satisfies 

x ( t ) = 0  if t ~ a  or t > ~ d  

= b - a  if b < < . t ~ c  

Then there exists a sequence {0 (m)} in Cgom(R) such that [0(m> I and ]dO(m)/dt[ 
are bounded independently of  m, and for each t s R 

lim O(m)(t) = x(t);  lim dO(m)(t)/dt = l~(t) - Is(t) 
m~o0 m~o~ 

Let ~b(m)(u) =q~(a)O(m)(u~), where ~ =  (ul, . . . ,u~_l,u~+l ..... u~) and ~oe 
Cgom(R ~- ~). By hypothesis, 

fR h(u)(8~b~"~)/Ou,) du = 0 
n 

Using the arbitrariness of % we deduce the existence of a null set N of R " -  ~ 
such that, if ~ ~ N% 

f ~ h(u)(dO(m)/du~) dui = O, m = 1, .... 2 
oo 

Hence by the dominated convergence theorem 

fr h(u) du~ = s h(u) du~ fo ra l l  ~t ~ N c 

The proof  that h is independent of  u= almost everywhere now follows as in 
Lemma 3.1, using the local integrability of  h. QED 
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